On the efficiency of electrokinetic pumping of liquids through nanoscale channels

نویسندگان

  • Jung Yim Min
  • E. F. Hasselbrink
  • Sung Jin Kim
چکیده

Electrokinetic pumps are a novel microfluidic technology being pursued for microscale high performance liquid chromatography (HPLC) and heat transfer applications. These pumps are typically reported to have efficiencies of only a few percent or less. We present an analytical and numerical investigation of the thermodynamic efficiency of electrokinetic pumping, solving the hydrodynamic and fully nonlinear Poisson–Boltzmann equations over a wide range of various dimensionless parameters. The numerical results show that efficiency as high as 15% may be attainable, when using uniform submicron-depth microchannels in substrates with moderately high zeta potentials, as well as using electrolytes with low specific conductivity (we identify practical candidate electrolytes). Simple design rules are given for pump dimensions and working electrolyte, based on dimensionless parameters such as the ratio of Debye layer thickness to channel depth, normalized zeta potential, and operating pressure. We compare our results with existing experimental data and provide practical design examples. © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospinning: Distribution of charges in liquid jets

Related Articles Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow Appl. Phys. Lett. 99, 224102 (2011) Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus AIP Advances 1, 042121 (2011) Production of monodisperse submicron drops of dielectric liquids by charge-injection from highly conducting liquids Phys. Fluids 23, 102003 (2011) E...

متن کامل

Two-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)

The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...

متن کامل

Investigation of electrokinetic mixing in 3D non-homogenous microchannels

A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...

متن کامل

International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena

Effective and versatile microfluidic pumps can be produced by utilizing various electrokinetic effects, such as electrohydrodynamics (EHD), induced-charge electroosmosis (ICEO) and dielectrophoresis (DEP). Among these, traveling-wave EHD (twEHD) has emerged as a powerful pumping mechanism due to its potential for miniaturization and the ability to pump a variety of liquids. However, when twEHD ...

متن کامل

OPTIMAL CONTROL OF PUMPING STATIONS IN OPEN CHANNELS BY METAHEURISTIC FIREFLY ALGORITHM

Optimum control of upstream pumping station in open channels with given constraint in downstream end is presented in this paper. The upstream control is capable of minimizing water level fluctuations in the channel in which the downstream pumping station causes an undesirable wave. The proposed method combines an unsteady non-uniform flow solver with shock-capturing capability, Fourier series a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004